חזרה לתוצאות החיפוש

Properties and applications of complex intermetallics [electronic resource]

להגדלת הטקסט להקטנת הטקסט
  • ספר

Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption

כותר Properties and applications of complex intermetallics [electronic resource] / edited by Esther Belin-Ferré.
מהדורה 1st ed.
מוציא לאור Singapore
London : World Scientific
שנה c2010
הערות Description based upon print version of record.
Includes bibliographical references.
English
הערת תוכן ותקציר CONTENTS
Foreword
Chapter 1: Metallic, Complex and So Different Jean-Marie Dubois
1. Introduction
2. Historical Background
3. Complexity in Real and Reciprocal Space
3.1. The example of compounds of Al, Mg and Zn
3.2. Hierarchy, groups of atoms and clusters
3.3. The key role played by disorder and defects
3.4. Definition of a CMA in reciprocal space
4. Metallurgy and Surface Chemistry of CMAs
4.1. Preparation methods
4.2. Corrosion, oxidation and interaction with chemical atmosphere
4.3. Atom transport
4.4. Essential mechanical properties
4.5. Metadislocations
5. Phase Selection 5.1. Hume-Rothery rules
5.2. More on specific Al-TM CMAs
5.3. The case of g-brass type CMAs
5.4. The case of Al-Mg(-Zn) alloys
5.4.1. Locating d-like states in Al-TM based alloys
5.4.2. Alloys based on Al, Mg, and possibly containing Zn
5.4.3. A supplementary mechanism for phase selection and stability?
6. Properties of Al-Transition Metal(s) CMAs
6.1. The essential property of Al-TM CMAs
6.2. Transport properties
6.3. Solid-solid contact
6.3.1. Fretting
6.3.2. Friction anisotropy
6.3.3. Surface energy
6.4. Wetting against liquid metals
6.5. Wetting against polar liquids7. Inverse Nano-Structuration
8. Conclusion
Acknowledgments
References
Chapter 2: Solution Growth of Intermetallic Single Crystals: A Beginner's Guide Paul Canfield
2. What Do You Need?
3. Planning the Growth
4. Assembling the Growth
5. Running the Growth
6. Decanting
7. Opening the Growth and Planning the Next One
8. Final Remarks
Chapter 3: Thermal Conductivity of Complex Metallic Alloys Ana Smontara, Ante Bilu Deljko Bihar and Igor Smiljani
2. Basics of the Thermal Conductivity Measurements 2.1. Heat losses in thermal conductivity measurements
2.2. Example - thermal conductivity of magnetite Fe3O4
3. The Analysis of Experimental Thermal Conductivity Data
3.1. Thermal conductivity of metals and alloys
3.2. Thermal conductivity of complex metallic alloys
3.2.1. ξ' and Ψ -phases in the AlPdMn complex metallic system
3.2.2. β-Al3Mg2 complex metallic alloy
3.2.3. Mg32(Al,Zn)49 complex metallic alloy
3.2.4. e-phase in the AlPd (Fe,Co,Rh) complex metallic system
4. Conclusions
Chapter 4: Thermoelectric Materials Silke Pashen 1. Introduction
2. Cage Compounds
2.1. Definitions
2.1.1. Guest/host atoms
2.1.2. Coordination number (c.n.)
2.1.3. Bond length/strength
2.1.4. Empty host
2.2. Examples
2.2.1. Filled skutterudites
2.2.2. Intermetallic clathrates
2.2.3. Clathrate-like compounds
2.2.4. Oxides
2.3. Characteristic properties of cage compounds
2.3.1. Rattling/tunneling
2.3.2. Phonon glass-electron crystal
2.4. Tuning for optimized performance
2.4.1. Stoichiometry
2.4.2. Doping
2.4.3. Substitution
2.4.4. Micro/Nanostructuring
3. Strongly Correlated Cage Compounds
סדרה Book series on complex metallic alloys
v. 2
היקף החומר 1 online resource (458 p.)
שפה אנגלית
מספר מערכת 997010704568605171
תצוגת MARC

יודעים עוד על הפריט? זיהיתם טעות?